Math for Architects MTH 111 Summer 2012, 1–3

MTH 111, Math for the Architects, Exam One

Ayman Badawi

QUESTION 1. (12 points) Find the focus, the vertex, and the directrix for the parabola $8y = 4x^2 + 8x + 20$. Let *F* be the focus of the given parabola. Given A = (1, 4) lies on the parabola. Find |AF|. Drew a rough graph of the given parabola.

QUESTION 2. (12 points) Given (3,9) and (3,-7) are the foci of a hyperbola and K = 6 is its constant. Write down the standard form equation of the hyperbola. Sketch a rough graph of the hyperbola.

QUESTION 3. (12 points) Find the foci, the center, and the constant K for the ellipse $9x^2 + 5y^2 + 20y - 25 = 0$. Sketch a rough graph of the ellipse.

QUESTION 4. (6 points) Does the line y = x + 2 intersect the hyperbola $y^2 - (x - 1)^2 = 3$? If yes, find the intersection points.

QUESTION 5. a) (10 points) Find the equation of the line that is perpendicular to the line 3y + 4x = 2 and it passes through the point (4, 1).

b)(5 points) Given L : 2x + 3y = 13 and A = (4, 6) is a point not on the line L. Find the distance between A and L.

QUESTION 6. (i) (**5 points**) $Lim_{x \rightarrow -1} \frac{\sqrt{x+10}-3}{x^2-1}$

(ii) (**5 points**) $Lim_{x \to -2^+} \frac{x+3}{x^2-4}$

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com